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Divide both sides of Equation 9.25 by ((ΠΠΠ)[1][0] − (ΠΠΠ)[0][0])p(x|S = H1)P(S =

H0),

p(x|S = H0)

p(x|S = H1)
>

(ΠΠΠ)[0][1] − (ΠΠΠ)[1][1]

(ΠΠΠ)[1][0] − (ΠΠΠ)[0][0]

P(S = H1)

P(S = H0)
[x] (9.26)

Equation 9.26 should hold, almost everywhere, and presents a lower bound on the

likelihood ratio for making the decision, O = H0. The right hand side of Equa-

tion 9.26 does not depend on x. It is a constant which is only dependent on the

associated penalties and the a-priori probability ratio of the two hypotheses H0 and

H1.

Let us define the threshold,

θH0

∆
= logb

(

(ΠΠΠ)[0][1] − (ΠΠΠ)[1][1]

(ΠΠΠ)[1][0] − (ΠΠΠ)[0][0]

P(S = H1)

P(S = H0)

)

(9.27)

as the log-likelihood ratio threshold for deciding in favor of the null hypothesis, H0,

against the alternative hypothesis, H1. Deciding in favor of H0, if

logb

p(x|S = H0)

p(x|S = H1)
> θH0

[x] (9.28)

and choosing H1 otherwise, will give the minimum error solution or the, so called,

maximum a-posteriori solution for a binary hypothesis. This result is also known

as the Neyman-Pearson lemma [3]. As in before, any base may be picked for the

computation of the logarithm – see Section 7.3.1.

Note that if we use the penalty matrix defined in Equation 9.9, then Equation 9.26

would be simplified as,

p(x|S = H0)

p(x|S = H1)
>

P(S = H1)

P(S = H0)
[x] (9.29)

or in other words,

θH0
= logb

P(S = H1)

P(S = H0)
(9.30)

9.2.2 Relative Information and Log Likelihood Ratio

Referring to Section 7.6, recall the expression for the relative information gained

by observing X = x in favor of hypothesis H0 against H1. As we saw, this relative

information was given by Equation 7.78 as the difference between the logarithms


